Does cerebrovascular disease affect the coupling between neuronal activity and local haemodynamics?
نویسندگان
چکیده
The relationship between neurophysiological and cerebrovascular-metabolic findings in patients affected by severe cerebrovascular deficits was investigated by comparing magnetoencephalographic (MEG-evoked fields) and blood oxygen level-dependent functional MRI (BOLD fMRI) responses to median nerve electric stimulation. Despite the use of identical stimuli, the two techniques elicited always-detectable responses in the control group (10 subjects), but demonstrated uncorrelated activation properties in our patient sample (10 subjects). All patients showed clear MEG signals in both the affected and unaffected hemispheres, indicating well synchronized, stimulus-locked firing of neurons in the primary sensorimotor cortex, but some patients showed no fMRI activation in either the affected or the unaffected hemisphere. In order to clarify the origin of this uncoupling, we investigated the possible role of lesion site, white matter hyperintensities, current medication, risk factors, anatomy of the neck vessels, and cerebral vasomotor reactivity (VMR) as measured by transcranial Doppler (TCD) during CO2 inhalation. Neither neuronal activation properties nor any of the considered factors were related to the lack of fMRI activation, with the exception of altered vasomotor reactivity, which was, on the contrary, strongly related. Preserved VMR was paired with absent BOLD bilaterally in the only patient affected by microangiopathy. This finding suggests that BOLD contrast could be more sensitive than TCD to chronic microvascular impairments, measuring small- rather than large- vessel reactivity.
منابع مشابه
What does fMRI tell us about neuronal activity?
In recent years, cognitive neuroscientists have taken great advantage of functional magnetic resonance imaging (fMRI) as a non-invasive method of measuring neuronal activity in the human brain. But what exactly does fMRI tell us? We know that its signals arise from changes in local haemodynamics that, in turn, result from alterations in neuronal activity, but exactly how neuronal activity, haem...
متن کاملThe relationship between blood flow and neuronal activity in the rodent olfactory bulb.
In the brain, neuronal activation triggers an increase in cerebral blood flow (CBF). Here, we use two animal models and several techniques (two-photon imaging of CBF and neuronal calcium dynamics, intracellular and extracellular recordings, local pharmacology) to analyze the relationship between neuronal activity and local CBF during odor stimulation in the rodent olfactory bulb. Application of...
متن کاملAge-specific non-invasive transcutaneous Doppler ultrasound derived haemodynamic reference ranges in elderly Chinese adults
BACKGROUND Whilst there is a presumption in medicine that ageing adversely affects cardiovascular function, it is unknown if resting haemodynamics are compromised in the elderly, and if so, to what degree. This study was intended to answer several questions; whether age-related changes in haemodynamics occur; whether there was a difference between the haemodynamics of ageing subjects with and w...
متن کاملLocalized near-infrared spectroscopy and functional optical imaging of brain activity.
Changes in cerebral blood flow (CBF) and cerebral metabolic rates (CMRO2) have been used as indices for changes in neuronal activity. Near-infrared spectroscopy (NIRS) can also measure cerebral haemodynamics and metabolic changes, enabling the possible use of multichannel recording of NIRS for functional optical imaging of human brain activity. Spatio-temporal variations of brain regions were d...
متن کاملSubarachnoid Hemorrhage, Spreading Depolarizations and Impaired Neurovascular Coupling
Aneurysmal subarachnoid hemorrhage (SAH) has devastating consequences on brain function including profound effects on communication between neurons and the vasculature leading to cerebral ischemia. Physiologically, neurovascular coupling represents a focal increase in cerebral blood flow to meet increased metabolic demand of neurons within active regions of the brain. Neurovascular coupling is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 127 Pt 1 شماره
صفحات -
تاریخ انتشار 2004